4. Ich runzelte missbilligend die Stirn. Da zwei Monate bis zur ersten Geburt Volkert (1996) meint, dass die Null nicht verfrüht thematisiert werden sollte, da „vom Systematischen her kein zwingender Bedarf" bestehen würde (Volkert 1996, S. 103). Die Zahl Null ist das Ergebnis einer Zahl minus sich selbst: Also 7 minus 7 ist Null! Dies kennen wir auch von den römischen Ziffern, denn da fehlt auch ein Zeichen für die Null. Da es für beide also die gleiche Zahl ist, braucht man nur noch den Grenzwert einer Zahlenfolge zu berechnen um e zu erhalten. Die Eigenschaften der natürlichen Zahlen legte der italienische Mathematiker Guiseppe Peano11 in den nach ihm benannten Peano-Axiomensystem fest: P1: Null ist eine natürliche Zahl. Nymphenburger Gymnasium Kollegstufenjahrgang 2002/2004 Facharbeit aus dem Fach Mathematik Thema: Die geschichliche Entwicklung der Zahl 0 Verfasser: Mein Name P3: Null kann nicht auf eine natürliche Zahl folgen. „Die Null wurde in Indien erfunden, vor etwa 1500 Jahren.“ „Was heißt eigentlich ,erfunden‘?“, hakte Maria nach. Da die Null von der katholischen Kirsche jedoch als „Teuflisch“ angesehen wurde, setzte sich die Null als Zahl erst im 14. Rationale und Irrationale Zahlen Komplexe Leistung im Leistungskurs Mathematik Gymnasium Klingenthal eingereicht von geboren am 26.9.1997 in Rodewisch Fachlehrer: Herr M. Grünbach, 11.06.2015 Inhaltsverzeichnis 1. bei der gebildeten Bevölkerungsschicht und im 17. Jh. Beispiel: a +()()−a = −a +a = 0. Die beiden Zahlenfolgen, die e einschachteln, nennen wir jetzt und t n.Da sie mit steigendem n eine Intervallschachtelung bilden, besitzen sie als Grenzwert für nach dem Cantorschen Axiom genau eine innere Zahl. Hallo .. also ich kann dir mehrere Themen für eine Facharbeit in Mathe anbieten: 1.: die zahl null - eher eine geschichtliche Arbeit. wann ist sie zum ersten Mal aufgetreten. P2: Der Nachfolger jeder natürlichen Zahl ist auch eine natürliche Zahl. Die Fibonacci-Zahlen Seite 3 be nden. Aber beide Nullen verschwanden mit dem Untergang der Zivilisation, die sie hervorgebracht hatte. Existenz von inversen Elementen Zu jedem a∈ G gibt es genau ein Inverses a−1, so dass a−1 a = a a−1 = n gilt. 4 Beispiel: Bei der Addition ist die Zahl 0 das neutrale Element und bei der Multiplikation die Zahl 1. Die entsprechende Hieroglyphe ist das älteste bekannte Zeugnis für die Zahl Null. Dies ist im Monat eins genau ein Paar, davor waren es null Paare: F 0 =0 (1) F 1=1 (2) Die Zahl der Paare F n im Monat nist die Summe aus der Hasenpopulation des Vormonats F n−1 und der neugeborenen Paare. Definition der Menge S. 3 2. dank der so genannten „Rechenmeister“, wie es beispielsweise Adam Riese einer war, bei der allgemeinen Bevölkerung durch. Vor allem sieht er ein Problem darin, dass die Null als Zahl nicht sinnvoll über Alltagsbezüge erarbeitet werden kann. Die Behandlung der Null im Unterricht ist umstritten. wo liegt das Problem bei der Null. Doch bei der Zahl Null gibt es ein Problem, denn es gibt keinen Finger, der die Zahl Null darstellt. Diese Eigenschaften einer Gruppe heißen Gruppenaxiome. „Es gibt eine Steintafel, auf der die Null benutzt wurde, um Zahlen zu schreiben.“ „Und wie kam die Null zu uns?“, fragte Maria. was für Auswirkungen hat das ganze (geht dann in richtung infetisimal rechnung) Jh. Irrationale Zahlen 2.1 Zahlen außerhalb von S. 4 2.2 Wurzel-und transzendente Zahlen S. 5 3.